

“U” Substitution (integration)

The main purpose of this type of “U” substitution is to make it simpler to integrate composite functions. It basically reverses the chain rule for derivatives.

Steps:

1. Determine “u” (Often, this is the most “inner” part of the function)
2. Find the derivative of u
3. Integrate function with respect to u
4. Don’t forget to add C
5. Replace u with the x form

Note: Make sure all the x’s are replaced with a form of u before integrating.

Examples:

$$1.) \int (x^2 - 1)^3 (2x) \, dx$$

Given function

$$u = x^2 - 1$$

Determine u and its derivative

$$\frac{du}{dx} = 2x$$

$$du = 2x \, dx$$

$$= \int u^3 \, du$$

Integrate with respect to u

$$= \frac{1}{4} u^4 + C$$

$$= \frac{1}{4} (x^2 - 1)^4 + C$$

Replace u with the x form (Recall that $u = x^2 - 1$)

$$2.) \int (x^2 + 3x + 5)^8 (2x+3) \, dx$$

$$u = x^2 + 3x + 5$$

$$\frac{du}{dx} = 2x + 3$$

$$du = (2x+3) dx$$

$$= \int u^8 du$$

$$= \frac{1}{9}u^9 + C$$

$$= \frac{1}{9}(x^2 + 3x + 5)^9 + C$$

$$3.) \quad \int (1 - 2x^2)^4 (4x) dx$$

$$u = 1 - 2x^2$$

$$\frac{du}{dx} = -4x$$

$$-du = 4x dx$$

$$= \int -u^4 du$$

$$= -\frac{1}{5} u^5 + C$$

$$= -\frac{1}{5} (1 - 2x^2)^5 + C$$

$$4.) \quad \int x (4x - 5)^3 dx$$

$$u = 4x - 5$$

$$\frac{du}{dx} = 4$$

$$du = 4 dx$$

$$\frac{1}{4} du = dx$$

Note: If $u = 4x - 5$, then you can solve for x to find $x = \frac{u+5}{4}$, or $\frac{1}{4}(u+5)$

$$= \int \frac{1}{4} (u+5)(u^3) \left(\frac{1}{4} du \right)$$

$$= \int \frac{1}{16} (u^4 + 5u^3) du$$

$$= \int \left(\frac{1}{16} u^4 + \frac{5}{16} u^3 \right) du$$

$$= \frac{1}{80} u^5 + \frac{5}{64} u^4 + C$$

$$= \frac{1}{80} (4x-5)^5 + \frac{5}{64} (4x-5)^4 + C$$

“U” Substitution with Limits: (There are 2 common methods to this)

$$1.) \int_1^2 (4x-5)^3 dx$$

$$u = 4x-5$$

$$du = 4dx$$

$$\frac{1}{4} du = dx$$

$$= \int_{-1}^3 \frac{1}{4} u^3 du \quad (\text{Note the change in the limits}) \quad x = 2 \rightarrow u = 4(2)-5 = 3$$

$$x = 1 \rightarrow u = 4(1)-5 = -1$$

$$= \frac{1}{16} (3)^4 - \frac{1}{16} (-1)^4$$

$$= 5$$

OR

$$2.) \int_1^2 (4x - 5)^3 dx$$

$$u = 4x - 5$$

$$du = 4dx$$

$$\frac{1}{4} du = dx$$

$$= \int_1^2 \frac{1}{4} u^3 du$$

$$= \left[\frac{1}{16} (4x - 5)^4 \right]$$

$$= \frac{1}{16} (4(2) - 5)^4 - \frac{1}{16} (4(1) - 5)^4$$

$$= 5$$